March 6, 2024 / General, 101 learning, Installation and testing, Best Practices
Both shielded and unshielded twisted-pair copper cable comes in either stranded or solid wire versions. There are plenty of considerations when it comes to choosing one or the other, including standards, environment, application, and cost. Let’s take a look at the differences and considerations, so you can decide whether stranded copper wire or solid copper wire cable is right for your specific installation.
The first difference between stranded and solid wire cable is in the way they’re made: the terms stranded and solid refer to the actual construction of the copper conductors within the cable.
The second most noticeable difference between stranded and solid wire cable is flexibility.
A less-obvious difference between stranded and solid wire cable is performance.
Now that you understand the differences between stranded and solid wire cable, let’s cover what you need to consider when making a choice.
Which type of wire is the best choice depends on the installation's requirements.
When it comes to 90-meter horizontal permanent links, there’s no choice: whether it's shielded or unshielded twisted pair, both TIA and ISO/IEC standards require solid wire cable. Stranded cable (24 and 26 AWG) is limited to patch cords and 10-meter lengths within a 100-meter channel.
Because stranded cables are more flexible and can withstand bending, they make excellent patch cords for equipment connections and cross-connects where cables are frequently bent and manipulated; at just 10 meters of the channel, the increased insertion loss and resistance aren’t a factor in the overall channel performance. However, smaller 28 AWG stranded patch cords that have even more insertion loss and resistance due to their smaller gauge do have some limitations — get the Skinny on 28 AWG Patch Cords to learn more.
Open office environments, however, are special situations; they’re faced with regular reconfigurations and may require a more flexible cabling system. In those installations, the standards allow stranded patch cords to take up more than 10 meters of the channel. However, if you’re using more than 10 meters of stranded cable in a channel, industry standards require de-rating the overall channel length to accommodate for the greater insertion loss and DC resistance.
When it comes to de-rating stranded cable per industry standards, the overall gauge is a factor: higher-gauge (thinner) cables have a higher de-rating factor. The de-rating for 26 AWG stranded cable is 0.5, while 24 AWG is only 0.2, and 22 AWG stranded cables require no de-rating at all.
Here are the calculations to determine overall channel length, where H=horizontal cable length, D=de-rating factor, C= total stranded cable length and T=total channel length.
For example, if you’re using 60 meters of horizontal solid category 6A cable and 40 meters of stranded 24 AWG category 6A patch cable with a 0.2 de-rating factor, the total length of the channel must be reduced to 97.5 meters. (If you prefer the actual math: total stranded cable length = [105-60]/[1 + 0.2], or 37.5, and total channel length = 60+37.5, or 97.5 meters.) If you’re using 26 AWG stranded cable with a 0.5 de-rating, the channel length needs to be reduced to 90 meters.
While stranded cable is the norm for patch cords at patching areas in the telecommunications room (TR) and at the work area (perhaps longer than 10 meters in open offices), a primary application to consider in today’s LANs warrants the use of solid patch cords: Power over Ethernet (PoE). When PoE is delivered over twisted-pair copper cable, some of the power dissipates as heat. When power dissipates as heat, the cable temperature increases. With higher insertion loss and DC resistance, stranded patch cords are more likely to exhibit degraded transmission performance at elevated temperatures.
While not typically a concern in environmentally controlled spaces like the TR, stranded patch cords could become an issue once you start connecting devices in the ceiling — think wireless access points, security cameras, LED lights, and more. In best practice, if the environment isn’t temperature controlled and the cable doesn’t have to bend much, solid cable patch cords should be used. If you do use stranded patch cords in uncontrolled environments, it’s better to keep them short (about 5 meters or less). And when it comes to higher-temperature environments, industry standards require de-rating channel length for that, too; more cables in a bundle, each generating more heat, can require even more length de-rating (though there can be An Exception to Every Rule).
While more strands in a conductor mean greater flexibility, a higher strand count also means a higher price. To keep costs down, stranded category 6 and category 6A cable are designed to strike a balance: enough strands to maintain proper flexibility, but not so many that it creates a dramatic price difference. You don’t have to compromise performance (or standards compliance) by selecting stranded wire cable instead of solid for environments and applications for which it’s not suited. Keep your stranded cables in environmentally controlled areas that require greater flexibility, and use solid wire cable where rugged performance (and little bending) is required.
Whether it’s patch cords, permanent links, or channels, you can configure a Fluke Networks Versiv™ tool to certify the cable's performance.
View the Versiv Configurator
I don't believe MTW was in anything other than standard gauges, but like TFFN it could be had in 18 and 16ga. Simply take a caliper and measure the bare conductor and compare it to #14 and 12 solid if you can't eyeball it. But really you don't care about that unless you are concerned that it is the proper gauge for the circuit.
To determine fill, measure the OD of the insulation with a caliper and multiply by the number of existing runs to determine the existing fill. Then add the ODs of the new pulls and look at a conduit fill chart to see what you can do.
-Hal
If you are looking for more details, kindly visit Air Winch for Sale, Pneumatic Hoists Manufacturers, Electric Hoist Solution.